
PHYSICAL REVIEW C 112, 045801 (2025)

Bayesian analysis of the 86Sr(α, α) reaction to constrain the 86Sr(α, n)
cross section at astrophysical energies
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The alpha optical model potential (α-OMP ) is a phenomenological approach used to describe elastic scattering
where multiple reaction channels are open. It is one of the most critical inputs for the calculation of thermonuclear
reaction rates in explosive stellar environments, but uncertainties within the α-OMP lead to imprecise predictions
hindering comparisons between calculations and observations. In order to improve the precision of the α-OMP,
additional nuclear physics data are required. In this paper, a measurement of the 86Sr(α, α) elastic scattering cross
section at multiple energies is reported. A local optical potential is constructed via a fully Bayesian analysis
of the elastic scattering data. The resulting uncertainties on the low-energy cross sections relevant to nuclear
astrophysics are then calculated and shown to be on the order of 50%.
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I. INTRODUCTION

Observations of elemental abundances in metal-poor stars
located in the galactic halo show significant scatter for el-
ements of the first rapid neutron capture process peak (r
process), between strontium (Sr, Z = 39) and silver (Ag,
Z = 47) [1], but follow a robust r-process pattern for heav-
ier elements [2]. Currently, the astrophysical origin of these
observations is unclear. One possible scenario is that these
intermediate mass elements are the product of nucleosynthesis
occurring in the ejecta of neutrino-driven (ν-driven) winds
from core collapse supernovae (CCSN) [3]. In the case of
neutron-rich ejecta, temperatures of 2–5 GK following an α-
rich freezeout from the nuclear statistical equilibrium (NSE)
would drive nucleosynthesis in the A = 60–110 region primar-
ily through (α, n) reactions involving nuclei a few units away
from stability. This scenario is known as the weak r process or
α process [4–6].

For medium-mass nuclei at temperatures above a few gi-
gakelvin, (α, n) reactions will proceed through a large number
of states in the compound nucleus and, as a result, are well
described by the predictions of the Hauser-Feshbach statistical
model1 [7]. Above the neutron threshold, neutron emission
is highly favored when compared to other open reaction

*Present address: United States Navy, Charleston, South Carolina
29404, USA.

1Throughout this paper it will be necessary to use “Hauser-
Feshbach” to refer to the statistical theory of nuclear reactions in
order to distinguish it from the Bayesian statistical model that is the
primary focus of the paper.

channels, typically making the cross section of (α, n) re-
actions at least an order of magnitude larger than those of
(α, p) or (α, γ ) reactions. As a result, the total reaction cross
section and the (α, n) cross section are nearly equal, and the
former is sensitive only to the alpha optical model potential
(α-OMP ), making it the key input in Hauser-Feshbach calcu-
lations [8]. However, these (α, n) reactions still occur below
the Coulomb barrier, where it has been found that the many
available α-OMP produce cross sections that can vary by an
order of magnitude [8,9]. These cross-section uncertainties
propagate to the corresponding thermonuclear reaction rates,
and, hence, to the abundance predictions of CCSN models,
stymieing efforts to connect observations of metal-poor stars
to specific astrophysical conditions [10,11].

Save for a few exceptions, most optical potentials used
in the literature are phenomenological in nature, where pa-
rameterized real and imaginary potentials are adjusted to
reproduce elastic scattering angular distributions, total reac-
tion cross sections, and analyzing powers [12]. It is critical
to note that the sensitivity studies of Refs. [10,11] account
only for uncertainties inferred from comparing the predictions
of a handful of α-OMP with one another, and not for any
parametric uncertainty arising from the phenomenologically
derived potential parameters. An unfortunate situation arises
from the lack of uncertainty quantification for these α-OMP:
the predictions of individual optical models do not include un-
certainty estimates, meaning one cannot assess their precision
when predicting (α, n) cross sections, nor can one determine
the degree to which different models actually disagree.

Recent efforts by the nuclear astrophysics community have
focused on addressing the scarcity of relevant (α, n) cross-
section data, particularly for key isotopes and neighboring
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nuclei. These experiments have employed both stable and
radioactive ion beams with a variety of techniques, including
activation methods [13,14], active-target systems [15–17], and
recoil mass separators [18]. However, in these studies the
measured (α, n) cross sections are used only to discriminate
between available α-OMP, not to improve or determine new
α-OMP parameters.

Several previous studies have taken direct steps towards
determining α-OMP parameters by measuring elastic scatter-
ing data from a single or few isotopes, with mixed success.
For example, the high-precision scattering data of Ref. [19]
for 144Sm(α, α) failed to predict the 144Sm(α, γ ) cross sec-
tions measured in Ref. [20]. A similar result was found for
94Mo(α, α) and 94Mo(α, n) in Ref. [21] and Ref. [22], re-
spectively. The larger-scale study of Ref. [23] found some
improved predictions with their potential, but just as many
worsened predictions for α-induced reactions on 106Cd, 118Sn,
and 120,124,126,128,130Te. Again, absent from these studies is a
robust determination of the uncertainty that provides confi-
dence intervals for the observed agreement or disagreement.

In this paper, we report on a measurement of
86Sr(α, α) 86Sr that has been analyzed using a first-of-its-kind
Bayesian statistical model. Our method allows us to extract
α-OMP parameters and examine their influence on the
86Sr(α, n) 89Zr cross section taking into account all parameter
correlations. These correlations are in turn propagated through
Hauser-Feshbach calculations to show the extent to which a
single, modestly precise scattering experiment can constraint
the α-OMP and how cross-section measurements can be
combined with scattering data to improve the predictive
power of the model. In doing so, we aim to illustrate the
limitations of elastic scattering data and outline possible
directions for future experiments.

The paper is organized as follows. Section II details our ex-
perimental setup for the 86Sr(α, α) 86Sr measurement, Sec. III
introduces all relevant details for our analysis including a
detailed description of the Bayesian model, Sec. IV presents
and gives context to our results, and Sec. V summarizes this
work with suggestions for future work.

II. EXPERIMENT DETAILS

The 86Sr(α, α) experiment, as well as its ancillary mea-
surements, was carried out at Triangle Universities Nuclear
Laboratory (TUNL) using the 10 MV TUNL FN tandem
accelerator. The TUNL tandem facility has an analyzing mag-
net that serves several beam lines. Our experiments were all
carried out using the 52◦ line and its associated scattering
chamber. The scattering chamber is approximately 60 cm
in diameter and has two independent rotating plates on the
top and bottom of the chamber. These plates can be fully
rotated without breaking vacuum and can accommodate up
to ten total detectors (five top and five bottom). For these
experiments three silicon surface barrier detectors (SSB) were
used to measure angular distributions. All of the detectors had
an active area of 150 mm2 and a depletion depth of at least
300 µm in order to ensure that 21-MeV α particles would
be stopped within their depletion regions. One rectangular
collimator was used for each detector as a balance between

maximizing their solid angles, reducing background induced
from scattered beam, and minimizing the sensitivity to beam
and detector misalignments. The geometric solid angle of each
detector was found to be 0.98(8) msr. Detector signals were
transmitted through a Mesytec MSI-8 preamplifier and shaper
[24]. The output was sent into a CAEN V785 peak sensing
analog-to-digital converter (ADC) [25] that was triggered off
the common timing output of the MSI-8. Electronic dead time
was measured with a pulser and was below 10% for all the
data used in this study. Data was recorded for offline analysis
using the MIDAS data acquisition software [26].

A. Magnet calibration

The analyzing magnet was energy calibrated for the 52◦
beam line using the Ep =1748-keV resonance in the 13C(p, γ )
reaction [27,28]. A yield curve was measured with a large
volume NaI detector placed on top of the scattering chamber.
Average proton currents were on the order of 400 pnA. A self-
supporting, 40 µg/cm2 natC carbon foil target was used. The
thick target yield curve was used to determine the magnetic
constant using the relativistic equation:

Bρ = 1

q

√
m

cmag

[
E2

2mc2u
+ E

]
, (1)

where B is the measured field of the NMR probe of the
analyzing magnet in mT, ρ is the bending radius for the 52◦
line in meters, m is the mass of the beam in amu, E is the
beam energy in keV, q is the charge state of the beam, and u
is amu in units of keV/c2 = 931.494 × 103 keV/c2. We de-
termined cmag = 0.02404(12) (keV u)/(m2 mT2), where the
uncertainty is statistical only. Due to the low energy at which
this calibration was performed and our neglect of hysteresis,
we estimate an additional uncertainty at each of our beam
energies based on the reproducibility of the yield and compari-
son to previous energy calibrations of the same beam line. The
beam energies for the 86Sr(α, α) 86Sr experiment where deter-
mined to be 12077 ± 6(stat.) ± 40(syst.), 18101 ± 9(stat.) ±
60(syst.), and 20530 ± 10(stat.) ± 70(syst.) keV.

B. Target fabrication

SrCO3 powder material enriched to 96.89% in 86Sr was
deposited via thermal evaporation onto self-supporting carbon
foils of natural isotopic abundance. The carbon foils were
acquired from the Arizona carbon foil company [29] and were
quoted as having a thickness of 40(4) µg/cm2. Rutherford
back scattering (RBS) was carried out during a separate beam
time to determine target properties. A 4He++ beam was accel-
erated to 2 MeV and back scattered α particles were detected
at 165◦ in the laboratory frame. Examining both oxygen and
strontium elastic scattering peaks indicated an oxide layer was
produced during the evaporation with a Sr:O ratio of ≈1 : 1.
An areal density for the SrO layer of 24.6(25) µg/cm2 was
deduced from the areas of these peaks. A small amount of
tantalum was found to be present in the target during the
main experiment, consistent with a small amount of the boat
material being deposited during the evaporation of the SrCO3

045801-2



BAYESIAN ANALYSIS OF THE 86Sr(α, α) REACTION … PHYSICAL REVIEW C 112, 045801 (2025)

FIG. 1. Silicon detector spectrum at θLab = 95◦ for 12 (top), 18 (middle), and 21 (bottom) MeV. Tantalum contamination came from the
boat used to evaporate the 86Sr CO3 powder. Note that the shaping amplifier gain was adjusted after the 12 MeV spectrum but was then held
constant. The peaks at lower α-particle energy were not identified and are irrelevant to the current study.

material. The amount was too small to be reliably observed
during the RBS experiment.

C. 86Sr(α, α)

Beams of 4He++ were accelerated to energies of approxi-
mately 12, 18, and 21 MeV (for precise energies see Sec. II A).
Beam currents on target during the experiment were typically
around 45 pnA. Currents were measured with a Faraday cup
located approximately 1 m downstream from the target and
suppressed with a voltage of –300 V. After the experiment, the
absolute current readings were found to be unreliable. It was
determined that the suppression voltage had been switched
inadvertently resulting in an incorrect current reading. The
detector on the bottom plate of the chamber was left stationary
at each energy to monitor target degradation, with θLab =
150◦, 70◦, 80◦ at 12, 18, and 21 MeV, respectively. No sign
of degradation was seen over the course of the experiment.
The two detectors on the top plate were rotated to measure
angular distributions from 30◦–150◦ in 5◦ increments. The
target ladder was rotated by 45◦ relative to the beam for
detector angles between 60◦ and 120◦, where the target ladder
would shadow the solid angle.

III. ANALYSIS

α-particle spectra from 86Sr(α, α) 86Sr were constructed
for each angle and energy using the software package sauce
[30]. Typical spectra from the silicon detectors are provided
in Fig. 1. The elastic scattering peaks from 86Sr were clearly

separated from contaminates at all angles and readily identifi-
able. No attempt was made to energy calibrate the spectra or
to determine the origin of peaks that did not arise from elastics
scattering. Peak areas were determined by fitting a Gaussian
peak shape with a linear or quadratic background using the FI-
TYK package [31]. As mentioned in Sec. II C, we could not de-
termine the absolute number of beam particles incident due to
an unreliable charge integration. Nevertheless, we constructed
angular distributions using the measured charge accumulation
and target thickness (Sec. II B), but left the absolute scaling as
a free parameter in our optical model calculations.

It is our goal to compare, in as complete a fashion as
possible, the 86Sr(α, n) 89Zr cross sections predicted based on
our 86Sr(α, α) 86Sr data with those of many optical models.
We have carried out Bayesian inference on the 86Sr(α, α) 86Sr
data; however, it is computationally intensive to propagate the
resulting parameter uncertainties through Hauser-Feshbach
calculations at many energies. Instead, we choose to access
the impact of elastic scattering data on the predicted cross
section by focusing on a single energy for the 86Sr(α, n) 89Zr
reaction (Eα = 6.2 MeV). By focusing on a single quantitative
measure of variation caused by the α-OMP, we sidestep the
larger issue of whether the elastic scattering data are able to
accurately predict the low-energy cross section. Comparisons
to and impacts of the measured 86Sr(α, n) data will be dis-
cussed in Sec. IV C. We are also assuming that the variation at
this single data point will be indicative of the overall reaction
rate uncertainty. In the sections that follow, we will detail
each of the calculations necessary to analyze and interpret our
experimental data.
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A. Parameterization of the α-OMP

It is insufficient to analyze the 86Sr(α, α) 86Sr angular
distributions without first justifying our choice of parametriza-
tion of the α-OMP . It has been frequently claimed in the past
that elastic scattering data fails to constrain the low-energy
reaction cross sections [32]; however, elastic scattering studies
often adopt various α-OMP formalisms [20,21], introduc-
ing additional systematic uncertainties that make quantitative
comparison difficult. In this work, we focus on the effects
of a single optical model formalism to investigate parametric
uncertainties.

The α-OMP adopted for this study is a simple six-
parameter version similar to those employed in Refs. [33–36].
It is defined as:

U (r, E ) = Vc(r; rc) − V (E ) f (r; r0, a0) − iW (E ) f (r; ri, ai ),

(2)

where Vc(r; rc) is the Coulomb potential of a uniformly
charged sphere and f (r) is the Woods-Saxon form factor:

f (r; r0, a0) = 1

1 + exp
( r−r0A1/3

t
a0

) . (3)

The form factor has two parameters: r0 is the radius and a0 is
the diffuseness. At is the mass number of the target. We have
included only a volume imaginary potential due to historical
precedence [33,34,36] and the limited amount of data under
consideration for this experiment. We assume the Coulomb
radius to have the common value of rc = 1.3 fm.

Since our elastic scattering measurements were carried
out well above the energies of interest to astrophysics, our
model would be incomplete without specifying the energy
dependence of the potentials. We only allow the real and
imaginary depths to be energy dependent, as was done in
Refs. [34–37]. For the real potential we adopt a linear
dependence:

V (E ) = V0 − V1E . (4)

For the imaginary volume term two parametrizations are used.
Each parametrization is treated as a separate model (i.e., a
separate fitting process) in the analysis. First is a linear form
identical, except for a sign, to the real potential:

W (E ) = W0 + W1E , (5)

and the second is the Fermi form:

W (E ) = W0

(
1 + exp

W1 − E

W2

)−1

. (6)

Both of these forms follow other α-OMP studies [20,21,38].
Furthermore, the Fermi form of energy dependence is not
unique to the α-OMP and has been adopted in the p, n global
optical model of Ref. [39] and 3He, t global optical model of
Ref. [40].

B. Hauser-Feshbach model calculations

All Hauser-Feshbach model calculations of the
86Sr(α, n) 89Zr cross section were performed with the
TALYS 2.0 code [41]. With the exception of the α-OMP and

level densities, the default TALYS’ parameters were used.
For the level density, the back-shifted Fermi gas model
(BSFG) was selected due to the observations of Ref. [42].
In that work a closer agreement was found between existing
experimental data and the predictions of Hauser-Feshbach
model calculations when using the BSFG level density
instead of the TALYS default. We observed the same trend
for 86Sr(α, n) when comparing to the data of Ref. [43].
TALYS includes eight α-OMP by default.

The reaction rate will be most sensitive to the cross sec-
tion at energies where its integrand is at a maximum:

〈σv〉 =
(

8

πμ

)1/2 1

(kT )3/2

∫ ∞

0
Eσ (E )e−E/kT dE , (7)

where k is Boeltzmann’s constant, E is the center-of-mass en-
ergy, μ is the reduced mass of the reacting particles, and T is
the temperature of the plasma. It must be stressed that for the
86Sr(α, n) reaction at temperatures of 2 GK the concept of a
“Gamow window” is not applicable due to the cross section no
longer being well described by s-wave barrier penetrability
[44,45]. Using TALYS with the parameters described above
along with the McFadden and Satchler optical model, we find
Eq. (7) to reach a maximum around 5.9 MeV in the center of
mass (compared to the 5.4 MeV of the Gamow peak). This
corresponds to a laboratory energy of Eα = 6.2 MeV, which
will be used for all quantification of the cross-section uncer-
tainty and as a stand in for the reaction rate uncertainty. At
6.2 MeV, two other reaction channels are open in addition
to 86Sr(α, n) 89Zr (Q = −5.292 MeV): 86Sr(α, γ ) 90Zr (Q =
6.674 MeV) and 86Sr(α, p) 89Y (Q = −1.676 MeV).

Table I provides the predictions of the eight α-OMP that
are included in TALYS, displaying a variation of two orders of
magnitude. For comparison, we have also included the predic-
tions of the Atomki-V2 potential calculated using a modified
version of TALYS 1.8 [32]. Table II lists the optical model
parameters that produced the statistical model calculations.
Qualitatively it is difficult to determine exactly why each
of these models produces such wildly different predictions.
Table I also shows what type of energy dependence is used
for the imaginary potential. All models used in TALYS, with
the exception of the McFadden and Satchler parameters, either
assume a linear or Fermi type energy dependence, further
justifying our decision to consider only those two forms. We
also note that the choice of the BSFG level density has a
reasonably large impact on these predictions. Compared to
the other models in TALYS, the BSFG model produces an
86Sr(α, n) 89Zr cross section a factor of 1.4–1.5 higher at
6.2 MeV and also predicts a 86Sr(α, p) 89Y branching ratio
a factor of 30 weaker. Since this shift in cross section is
nearly constant among optical models, we do not consider this
uncertainty further in this study.

C. Bayesian model

The considerations above provide parametric forms for the
α-OMP model and baseline calculations to observe the impact
of said parameters on Hauser-Feshbach model calculations. It
is now necessary to relate our data from the 86Sr(α, α) 86Sr
experiment to the α-OMP and extract potential parameters and
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TABLE I. Predictions of the α-OMP included in TALYS and their predicted cross sections for the 86Sr(α, n) cross section at Eα = 6.2 MeV.
We have listed whether the imaginary potential has volume (W ) and/or surface terms (WS) and its energy dependence where applicable. Note
that the α-OMP from Mohr et al. [32] is calculated using a modified version of TALYS 1.8 as described in that study.

α-OMP TALYS ID σ(α,n) (µb) Comment

Koning et al. [41] 1 1.002
McFadden and Satchler [33] 2 0.642 Not a global model, W only
Demetriou et al. [37] 3 0.483 W only, Fermi
Demetriou et al. [37] 4 0.237 W and Ws, Fermi
Demetriou et al. [37] 5 0.096 Dispersive
Avrigeanu et al. [35] 6 0.182 W and Ws, Linear
Nolte et al. [36] 7 5.403 W only, Linear
Avrigeanu et al. [34] 8 2.040 W only, Linear
Mohr et al. [32] 0.237 W only

uncertainties. By doing this, we can calculate uncertainties for
the 86Sr(α, n) 89Zr cross section in light of our experimental
results. Due to the complexity of this problem, we choose
to use a Bayesian approach to build a statistical model that
accounts for both theoretical and experimental uncertainties.

Bayesian statistics has proven to be effective in dealing
with the parametric uncertainties arising from phenomenolog-
ical models commonly used in nuclear physics. Global optical
model uncertainties [46], transfer reactions [47–49], and R-
matrix analysis [50] have all successfully been analyzed using
Bayesian methods and have, in most cases, provided quanti-
fied uncertainties often overlooked in frequentist analysis of
similar data. However, until this work, no study has attempted
to quantify α-OMP uncertainties for α-induced reactions us-
ing these techniques despite the clear need.

The heart of Bayesian statistics is using Bayes’ theorem
in conjunction with observations to update prior beliefs about
model parameters. Bayes’ theorem is given by:

P(θ|D) = P(D|θ)P(θ)

P(D)
, (8)

where θ are the model parameters, D are the data, P(θ) are the
prior probability distributions, which describe the model pa-
rameters before inference, P(D|θ) is the likelihood function,
which describes the probability of parameter values given
the observed data, P(D) is the evidence (a normalization
constant), and P(θ|D) is the posterior [51]. The posterior
distributions of interest in this work will be the α-OMP param-
eters subject to the influence of our elastic scattering angular
distributions.

D. Priors for experimental parameters

Our priors on parameters related to experimental un-
certainties follow motivations similar to those in Refs.
[48,49,52–54]. We allow for the possibility that our data have
an additional source of scatter, whether it be from experimen-
tal or theoretical sources, and that the normalization of the
data is free to vary. Both of these parameters are assigned to
the theoretical predictions of the α-OMP, a practice that we
have found to improve the efficiency of sampling our model
compared to scaling and spreading the experimental data. In
theory, the normalization step should be unnecessary, but as
mentioned in Sec. II C, the suppression voltage of the Faraday
cup was incorrectly applied, meaning there is an energy-
dependent normalization correction. It has been claimed (i.e.,
in Ref. [12]) that leaving normalization as a free parameter in
optical model calculation results in poor or unphysical fits to
the data. However, both Refs. [48,49] left the normalization
as a free parameter and were able to recover results consistent
with independent studies and analyses. The claim is likely
to stem from the difficulty of optimizing the optical model
parameters, but the Bayesian method used here allows the
optical model parameters to be biased towards their physical
range through priors improving the behavior of the fit.

Taking an α-OMP calculation at each laboratory energy,
indexed k, and center-of-mass angle, indexed j, we have the
normalization prior:

gk ∼ Uniform(−10, 10), (9)

where ∼ means “distributed according to”. This parameter is
transformed into a normalization that takes the cross section to

TABLE II. TALYS’ predictions for the 86Sr(α, n) cross section at Eα = 6.2 MeV along with the corresponding α-OMP model parameters.
The models of Ref. [37] are tabulated on a grid in TALYS and are, therefore, not included in the table. Ws is the derivative or surface imaginary
potential depth using the convention 4ai;s

∂ f
∂ri;s

.

TALYS ID σ(α,n) (µb) V (MeV) r (fm) a (fm) W (MeV) ri;v (fm) ai;v (fm) Ws (MeV) ri;s (fm) ai;s (fm) rc (fm)

1 1.002 223.5 1.21 0.66 0.83 1.21 0.66 21.12 1.27 0.55 1.24
2 0.642 185.0 1.4 0.52 25.0 1.4 0.52 1.3
6 0.182 154.9 1.25 0.67 4.0 1.52 0.40 1.3
7 5.403 151.6 1.24 0.78 19.33 1.57 0.60 1.3
8 2.040 151.6 1.24 0.78 6.35 1.57 0.60 1.3
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the experimental yield:

ηk = 10gk , (10)

allowing variations ±10 orders of magnitude. The theoreti-
cal/predicted yield is then:

dY ′

d� Theory,k, j
= ηk

dσ

d�Theory,k, j
. (11)

Our additional scatter is implemented as a percentage of the
theoretical yield, with a prior:

fk ∼ HalfNorm(0.152), (12)

i.e., a half-normal distribution with a standard deviation of
15% expressing out belief that it is unlikely that our data
contains additional statistical scatter in excess of 15%. This
fractional uncertainty is added in quadrature with the mea-
sured statistical errors (σExp,k, j):

σ ′2
k, j = σ 2

Exp,k, j +
(

fk
dY

d�

′

Theory,k, j

)2

. (13)

The final experimental uncertainties considered in the model
are the energy uncertainties of the α beam, which originate
from the magnet calibration procedure (Sec. II A). The uncer-
tainty of each energy is taken to be the quadrature sum of the
statistical and systematic errors reported in Sec. II A. While
the systematic errors are likely correlated between energies,
we have taken them to be independent. The prior is a normal
distribution:

Eα;k ∼ N (
Ecal;k, σ

2
stat;k + σ 2

sys;k

)
, (14)

where Ecal;k is the α energy predicted by our magnet calibra-
tion at energy k.

E. α-OMP priors

For the parameters of the Woods-Saxon volume potential,
we center our priors around the values of McFadden and
Satchler [33].2 Standard deviations taken to be 20% of the
central value in order to comfortably cover the physical range
of these parameters (r = [1.1, 1.7] and a = [0.42, 0.62]). We
have:

U ∼ N (μM&F, [0.2μM&F]2), (15)

where μM&F refers to the parameters of the McFadden and
Satchler optical model.

For the energy dependence, we have two sets of priors for
the linear and Fermi parametrization, respectively. All of the
priors for the energy dependence were constructed to overlap
with the global trends or local values reported in Refs. [20,34]
and to roughly align with the McFadden and Satchler values
at Eα = 24.7 MeV.

2It should be noted that while the literature frequently refers to the
McFadden and Satchler potential parameters as a global model, in
the words of the authors of that study they are only a “...convenient
starting set in a search for potentials” [33], which is exactly the
purpose they serve in our study.

The real potential energy dependence is taken to be lin-
ear and decreasing with energy [Eq. (4)]. The parameter V0

is a normal distribution centered around the McFadden and
Satchler value of 150 MeV with a standard deviation of 20%.
The parameter V1 is distributed according to a half-normal
distribution with mean of 0 and a variance of 1, ensuring that
the sign of the dependence does not change while covering the
ranges typical of other studies:

V1 ∼ HalfNorm(1). (16)

The linear dependence for the imaginary volume depth is the
same except increasing [Eq. (5)] with energy. It was found that
the 20% standard deviation centered around the McFadden
and Satchler value of 25 MeV was too constrained for this
case. To remedy this, W0 was allowed a 40% spread around
the 25 MeV depth:

W0 ∼ N (25.0, [0.4(25.0)]2). (17)

The slope, W1, follows the same prior as the real slope:

W1 ∼ HalfNorm(1), (18)

The Fermi form has three free parameters, taken to be:

W0 ∼ N (25.0, [0.2(25.0)]2), (19)

W1 ∼ T (0,∞)N (10, 0.52), (20)

and

W2 ∼ T (0,∞)N (2.0, 0.52), (21)

with T (0,∞)N being the truncated normal distribution re-
stricted to positive values. The range for these parameters was
a rough estimate of their acceptable physical values.

F. Constraint on the discrete ambiguity

Elastic scattering cross sections calculated from the optical
model are nearly degenerate when the phase shift differs by
a multiple of π . The real potential depth can produce these
shifts related by nπ , resulting in a multimodal posterior distri-
bution, commonly referred to as the discrete ambiguity. This
behavior is severe for a strongly absorbed projectile like 4He
[55], and our initial attempts to sample the posterior resulted
in families spanning V ≈ 60–300 MeV. We adjusted our ap-
proach to allow multiple modes in our posterior distribution,
but to limit those significantly different from the McFadden
and Satchler parameters. We follow the method outlined in
Ref. [49] by putting a constraint on the posterior distribution
via the real volume depth and radius.3 We define a quantity, c,
such that:

c = V rn, (22)

where n is a free parameter. In order to select a value for n,
we used samples from the unconstrained posterior (a detailed
description of the sampling can be found later in the article

3The relationship between the real radius and depth is often referred
to as the continuous ambiguity, but is nothing more than run-of-the-
mill parameter correlation.
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in Sec. III H), constructed histograms for c, and then varied
n by hand until the separation between modes appeared to
be maximized. We found n = 1.6 to provide good separation.
Restricting our sampling to 380 < c < 270 MeV fmn gave us
the modes closest to the global value (c = 259).

G. Bayesian model summary

We have detailed the Bayesian model constructed to both
fit the 86Sr(α, α) 86Sr data and then predict the 86Sr(α, n) 89Zr
cross section. For clarity we will write the model in its entirety
and reiterate the main points:

(i) We treat the data from each energy as having an
unknown normalization and additional statistical un-
certainty.

(ii) We constrain the posterior modes that arise due the
discrete ambiguity via Eq. (22).

(iii) Our potential priors are centered around the values of
McFadden and Satchler [33].

(iv) Two separate models are constructed and fit that as-
sume either a linear or Fermi energy dependence for
the imaginary depth.

Priors :

Eα;k ∼ N (
Ecal;k, σ

2
stat;k + σ 2

sys;k

)
V0 ∼ N (185, [0.2(185)]2)

V1 ∼ HalfNorm(1)

r ∼ N (1.4, [0.2(1.4)]2)

a ∼ N (0.52, [0.2(0.52)]2)

Linear:

W0 ∼ N (25, [0.4(25)]2)

W1 ∼ HalfNorm(1)

Fermi:

W0 ∼ N (25, [0.2(25)]2)

W1 ∼ T (0,∞)N (10, 0.52)

W2 ∼ T (0,∞)N (2.0, 0.52)

ri ∼ N (1.4, [0.2(1.4)]2)

ai ∼ N (0.52, [0.2(0.52)]2)

gk ∼ Uniform(−10.0, 10.0)

fk ∼ HalfNorm(0.15)

Functions : (23)

ηk = 10gk

Vk = V0 − V1Eα;k

Linear:

Wk = W0 + W1Eα;k

Fermi:

Wk = W0

(
1 + exp

W1 − Eα;k

W2

)
dY

d�

′

Optical,k, j
= ηk × dσ

d�Optical,k, j

σ ′2
k, j = σ 2

Exp,k, j +
(

fk
dY

d�

′

Optical,k, j

)2

Likelihoods:

dY

d�Elastic,k, j
∼ N

(
dY

d�

′

Optical, j,k
, σ ′2

Elastic,i

)

Constraints :

n = 1.6

c = V0rn

380 < c < 270,

where the index j refers to the center-of-mass angle and k
denotes each of the laboratory energies.

H. Numerical considerations

Sampling of the posterior distribution was carried out us-
ing dynamic nested sampling as implemented in the PYTHON

package DYNESTY [56–60]. Dynamic nested sampling was
first introduced in Ref. [60] as a method of improving the
posterior estimations produced by traditional nested sampling.
To expand on this, traditional nested sampling works by suc-
cessive updating of samples drawn from the priors, called live
points, such that, with each update, the likelihood increases.
These samples are drawn from the posterior, but they do not
guarantee accurate parameter estimation since they are not fo-
cused around the maximum of the posterior. Dynamic nested
sampling allocates additional live points in specific regions
in order to decrease the variance of the parameter estimates.
Users of dynamic nested sampling can set whether they want
to focus on improving parameter or evidence estimates via
a parameter G = [0, 1], with G = 0 providing focus on the
evidence and G = 1 on parameter estimates. Estimates of the
evidence are primarily useful for the Bayesian model compar-
ison (for an example, see the determination of � values from
transfer reactions in Ref. [48]). Dynamic nested sampling was
preferred over Markov chain Monte Carlo in the current work
since it can more readily deal with the multimodal posteriors
produced by the discrete ambiguity.

For this paper all dynamic nested sampling runs were ini-
tialized with 500 live points bounded with multiple ellipsoids
with updates performed via slice sampling. Our focus was on
parameter estimation and, as a result, G = 1. The algorithm
required around 4.5 × 107 likelihood evaluations per run, cor-
responding to 1.3 × 108 α-OMP calculations, and produced
at least 1 × 105 posterior samples. A basic optical model code
[61] was developed to render these number of evaluations
tractable, and its validity was checked against the reaction
code ECIS97 [62] in the energy range under consideration.
It was found to agree to 3%.
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c.m.

c.
m

.

FIG. 2. Angular distribution for the 12-MeV data. The 68% and
95% credibility intervals from our linear optical model are given in
blue and light blue, respectively.

IV. RESULTS AND DISCUSSION

A. Elastic scattering posterior distributions

Our fits of the experimental 86Sr(α, α) 86Sr angular distri-
butions are presented in Figs. 2–4 along with the 68% and
95% credibility intervals of the optical model calculations.
Both the Fermi and linear models produced seemingly identi-
cal distributions and, as a result, we have only shown the fits
from the linear model. Note that the error bars show the statis-
tical errors from the peak areas only and do not include the
additional uncertainty estimated from the fitting procedure.
Two points, 97◦ and 102◦, were excluded from the 12 MeV
fit due to abnormally low yields.

Our linear and Fermi models have 17 and 18 parameters,
respectively. Samples produced from nested sampling allow
us to examine correlations between all of these parameters and
compare their behavior between the two models. We divide

c.m.

c.
m

.

FIG. 3. Angular distribution for the 18-MeV data. The 68% and
95% credibility intervals from our linear optical model are given in
blue and light blue, respectively.

c.m.

c.
m

.

FIG. 4. Angular distribution for the 21-MeV data. The 68% and
95% credibility intervals from our linear optical model are given in
blue and light blue, respectively.

the parameters into the following subgroups: experimental,
real potential, and imaginary potential. Each parameter’s pos-
terior distribution will be compared to its prior one; the more
similar these distributions are, the less our data has influenced
their final value and uncertainty.

The experimental parameters cover the overall normaliza-
tion (e.g., g12), additional scatter (e.g., f12), and beam energy
(e.g., Eα;12). Figure 5 shows the pair correlation plots for both
the linear and Fermi models, with the overlap between the two
being almost exact. The overall normalization at each energy
is most highly correlated with the beam energy, but amounts to
less than 5% uncertainty on the cross section for all energies.
The normalization also has the effect of pulling the assumed
beam energies away from their prior values.

The correlations between the real parameters can be found
in Fig. 6 for both models. Overall the differences are marginal,
with the geometric parameters (r and a) being particularly
consistent. The energy dependence of the real potential (V1)
has deviated from its prior value, with more weight towards
lower values than would be expected from a half-normal
distribution with σ = 1. However, it is not clear that our
data adds any particular constraint, rather it appears to be an
indirect consequence of the correlation between V and r and
the limits placed on the discrete ambiguity.

The imaginary potential parameters of Figs. 7 and 8 in-
dicate similar behavior to the real parameters, but with even
less of a deviation from their prior values. In particular, the
parameters that control the energy dependence for the linear
and Fermi models are unchanged from their prior values.
Our data does not constrain the energy dependence of the
imaginary potential at all, and the posterior value is only
based on our initial assumptions. The geometric parameters
are significantly more constrained than the potential strengths,
but still less sharply peaked than their real counterparts.

B. Cross-section prediction at Eα = 6.2 MeV

We use the posterior samples shown in the previous sec-
tion to construct six-parameter α-OMP samples for TALYS
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FIG. 5. Corner plot for the experimental parameters: overall normalization (g), additional scatter ( f ), and beam energy (Eα). The linear
and Fermi parameters are plotted in light purple and black, respectively, while the prior distributions are shown as a solid red line in the
one-dimensional (1D) histograms. The linear and Fermi contours overlap nearly exactly. Reported numbers are the 16, 50, 84 percentiles of
the linear models’ posteriors. Subscripts indicate the energy of the data set they correspond to, i.e., g12 is the normalization parameter for the
12-MeV data set. All symbols are defined in the text, see Sec. III G.

calculations at E lab.
α = 6.2 MeV using both the linear and

Fermi models. Due to computational considerations, we only
use 1 × 104 samples for each model. Fig. 9 shows the pair
correlation plot between the potential parameters and the
86Sr(α, n) 89Zr cross section. Considering the radically differ-
ent W values for the linear and Fermi models, it is remarkable
that the 86Sr(α, n) 89Zr cross-section distributions overlap

significantly. No strong correlations are visually observed
between the cross section and the potential parameters, with
perhaps the exception of the imaginary diffuseness parameter.
To try and quantify this correlation beyond visual inspection,
we use Spearman’s rank order coefficient, rspearman, which
quantifies correlations between –1 and 1 [63]. The only vari-
ables that have an appreciable correlation, |rspearman| > 0.1,
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FIG. 6. Corner plot for the real potential parameters. The linear
and Fermi parameters are plotted in light purple and black, respec-
tively, while the prior distributions are shown as solid red lines in the
1D histograms. Reported numbers are the 16, 50, 84 percentiles of
the linear models posteriors. All symbols are defined in the text, see
Sec. III G.

FIG. 7. Corner plot for the linear imaginary potential parame-
ters. The prior distributions are shown as solid red lines in the 1D
histograms. Reported numbers are the 16, 50, 84 percentiles of the
posteriors. All symbols are defined in the text, see Sec. III G.

FIG. 8. Corner plot for the Fermi imaginary potential parame-
ters. The prior distributions are shown as solid red lines in the 1D
histograms. Reported numbers are the 16, 50, 84 percentiles of the
posteriors. All symbols are defined in the text, see Sec. III G.

with the cross section for the linear case are: a with 0.20, ri

with 0.23, and ai with 0.47. For the Fermi case we find: r with
0.24, a with 0.15, and ai with 0.16. It is our interpretation
that these correlations with the cross section reflect the strong
correlations between the geometric parameters of the real and
imaginary potentials.

Going further, the median cross sections of both models are
significantly displaced from the predictions of the McFadden
and Satchler parameters that we based our priors on (the
yellow lines in Fig. 9). It is noteworthy that there is seeming
agreement between our optical model parameters and those of
McFadden and Satchler when just comparing the parameters
individually. Our posterior samples, however, indicate that
in the high-dimensional parameter space of the α-OMP, the
McFadden and Satchler parameters actually lie in the tails of
the posterior distribution. These observations imply that the
cross-section predictions of the α-OMP are not sensitive to
any one parameter and are instead the result of the highly
correlated parameter space.

The 86Sr(α, n) 89Zr cross sections can also be compared
to all of α-OMP models provided in TALYS (see Tables I
and II). Figure 10 shows that, in general, we overlap with
the majority of the provided models, but disfavor the pre-
dictions of Avrigeanu et al. [34], Nolte et al. [36], and the
TALYS potential constructed from single nucleon potentials.
We give our suggested values and 68% credibility intervals
for the 86Sr(α, n) 89Zr cross section at Eα = 6.2 MeV in
Table III. The ratio of the upper (84%) and lower (16%)
percentiles with the median are also provided to give a
rough idea of factor uncertainty. It is from these ratios that
we draw the conclusion that our elastic scattering data are

045801-10



BAYESIAN ANALYSIS OF THE 86Sr(α, α) REACTION … PHYSICAL REVIEW C 112, 045801 (2025)

FIG. 9. Pair correlation plot of the 86Sr(α, n) 89Zr cross sections at Eα = 6.2 MeV and the potential parameters. The predictions of the
linear energy dependence model are in light purple, while those of the Fermi model are in black. See text for additional details. The parameters
of McFadden and Satchler are shown with the yellow lines.

capable of constraining the cross section to 50% at astrophys-
ical energies.

As a final investigation, we look for an origin for the
spread in cross-section values. It has been known since the late
1950s that the α-elastic scattering cross section is sensitive
only to the surface of the Woods-Saxon potential [65,66].
The continuous ambiguity arises from elastic scattering being
primarily influenced by scattering at the nuclear surface where
the potential strength is a function, not just of the depth,

but also the geometric parameters. Our two models for the
potential depth’s energy dependence support this view, since
each model has significantly different imaginary depths yet
largely consistent cross sections. Despite this, we did not find
evidence for the relationship found in Refs. [55,66] where
equivalent potentials meet the condition C = W exp(rA1/3/a),
where C is a constant. Our posterior samples demonstrated
scatter of many orders of magnitude for C and no obvious
trend, which could be the result of the diffuseness being
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µ

FIG. 10. Comparison of our predicted 86Sr(α, n) 89Zr cross sec-
tions at Eα = 6.2 MeV and the predictions of the α-OMP potentials
included within TALYS. The predictions of the linear energy depen-
dence model are in light purple, while those of the Fermi model are
in black. See text for additional details.

allowed to vary [67]. Another view comes from Mohr et al.
[68], where a sensitivity of what these authors call the tail of
the imaginary potential was found (see also Ref. [69]). They
truncated the imaginary potential at 12 fm and observing large
changes in σreac for 197Au +α. Calculating W f (r; ri, ai ) for
r = 12 fm, we observed a similar relationship as that was
observed in the cross-section data in Fig. 10. Pursuing this
explanation further, we constructed the creditability intervals
for W f (r; ri, ai ) from r = 0–30 fm and plotted them against
the other models in TALYS for which we have analytical forms
(see Table II). The results can be found in Fig. 11. Comparing
Figs. 10 and 11, we can see a clear correspondence with the
behavior of the imaginary potential strength at 10–20 fm and
the 86Sr(α, n) 89Zr cross sections.

C. Inclusion of cross-section data

So far, we have shown that our 86Sr(α, α) 86Sr data did
little to constrain the energy dependence of the α-OMP
parameters despite the measurements at multiple energies.
Contrary to expectations, this does not hinder our ability
to make relatively precise predictions of the reaction cross
section at lower energies. However, we do observe that our
cross section has been pulled away from the predictions of the
McFadden and Satchler parameters, and that these parameters
have been shown to agree with the cross-section measure-
ments of Ref. [64]. If the McFadden and Satchler predictions
are accurate, then it could be the case that the optical model

TABLE III. Cross sections with 68% credibility intervals at Eα =
6.2 MeV. The ratios of the upper (84%) and lower (16%) percentiles
with the median are given to show the approximate factor uncertainty
of the cross section predictions.

Model σ(α,n) (µb) 84%/50% 50%/16%

Linear 0.26+0.13
−0.06 1.5 1.3

Fermi 0.20+0.10
−0.06 1.5 1.43

Linear + Oprea et al. [64] 0.51+0.8
−0.14 2.57 1.38

FIG. 11. The total imaginary potential strength as a function of
radius. The purple and black bands correspond to the 68% credibility
intervals for the potential strength for the linear and Fermi models,
reflectivity. The solid lines show the strengths for the TALYS param-
eters found in Table II. There is a close correspondence between
the overall imaginary strength and the predicted 86Sr(α, n) 89Zr cross
sections for radii between 15–20 fm.

uncertainties are not dominant, but rather that there is a sys-
tematic deficiency with our models that produce precise but
inaccurate extrapolations at low energies.

To investigate, we repeated the analysis of the linear energy
dependence model, but included the data of Ref. [64]. At the
three energies reported in that study, 10.18, 10.79, and 11.40
MeV TALYS predicts a relatively constant neutron branching
ratio of ≈93%, with σ(α,p) + σ(α,n) ≈ σreac. The branching
ratio at these energies was also found to be significantly less
sensitive to the level density than that at 6.2 MeV (Sec. III B).
The total reaction cross section can be calculated using the
phase shifts, δ j , of the optical potential using:

σreac = 4π

k2

∑
�

(2� + 1)[Im(C�) − |C�|2], (24)

with C� = −i/2[exp(2iδ�) − 1] [70]. To compare to the
86Sr(α, α) 86Sr data, we scale σreac by 0.93 and assume a 10%
uncertainty on the resulting prediction. In this way, we can ef-
ficiently calculate the cross sections at these energies making
inference with these data feasible. Our Bayesian model was
updated to include an additional likelihood term:

σexp;m ∼ N (0.93σreac;m, [0.093σreac;m]2), (25)
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µ

FIG. 12. Same as Fig. 10, but with the additional predictions of
86Sr(α, n) 89Zr when including in the cross section data of Ref. [64]
in the linear model. The posterior samples of the new calculation are
in red. See text for additional details.

for each energy, m. Inference was carried out in an identical
fashion to all other calculations presented here using the linear
model.

The result is a higher cross section at 6.2 MeV, but overall
consistent, when compared to the values extracted from the
elastic scattering data alone. The tail of the cross-section dis-
tribution is significantly larger, leading to a dramatic increase
in the overall uncertainty at 6.2 MeV (approaching a factor of
2), a clear sign of the tension between our elastics data and
the cross-section data of Ref. [64]. The 86Sr(α, n) 89Zr cross
section can be seen in Fig. 12 compared to the elastic only
data and TALYS optical models. Importantly, no movement
was seen in the energy-dependent parameters of the linear
potential model, indicating these cross-section points do not
provide any additional information about the energy depen-
dence of the imaginary or real potentials. The shift in the cross
section is entirely due to changes in the geometric parameters.

V. CONCLUSIONS

In this study we have analyzed data from the 86Sr(α, α)
reaction taken at TUNL. Despite the modest precision of
the data, we were able to place constraints on the cross
section at low energies of around 50% taking into account
experimental and optical model uncertainties using a fully
Bayesian analysis. We explored two different methods of ex-
trapolating the potential parameters to lower energies, both
of which produced compatible predictions. We also allowed
for multiple modes in the real potential (i.e., the discrete
ambiguity). Our observations run contrary to frequent claims
in the literature that various optical model uncertainties make
low energy (α, n) cross sections subject to uncontrolled un-
certainties, particularly the imaginary potential. The behavior
of the 86Sr(α, n) 89Zr cross section at Eα = 6.2 MeV seems
to be almost entirely determined from the overall imaginary
potential strength at radii exceeding 10 fm. Our data appear
to acceptably constrain the potential in this region regardless
of the chosen energy dependence, supporting the value and
predictive power of elastic scattering data. These observations
only hold for the parametric uncertainties of our α-OMP,

further work is needed to determine if model uncertainties,
such as the assumption of the Woods-Saxon potential, play
a significant role. Furthermore, as mentioned in Sec. III B
other Hauser-Feshbach inputs such as level densities can also
impact the cross section. It is worthwhile to investigate the
extent to which these other model parameters are correlated
with α-OMP parametric uncertainties.

The importance of uncertainty quantification on the optical
model parameters themselves must be stressed. As shown in
Sec. IV B, even seemingly compatible sets of parameters can
occupy very different regions of the full parameter space and
the (α, n) cross section is sensitive to this joint space. Our
two models of energy dependence predicted imaginary depths
a factor of 4 different from each other, but with almost no
change in the predicted low-energy cross section. While this
is due to compatible overall imaginary strengths at radii larger
than 10 fm, such a deduction is only possible due to the fully
correlated samples provided to us from the Bayesian anal-
ysis since correlations exist between all α-OMP parameters
(see Fig. 9). Without properly accounting for these parameter
correlations it is impossible to actually assess the differences
between optical potentials.

Considering the above points, our first recommendation is
that future work focus on quantifying the agreement between
reaction cross section and elastics scattering data for the cases
where both are available. A Bayesian analysis such as ours
should be able to settle whether these data are ultimately
consistent given optical model uncertainties. We would also
advocate that, when analyzing the elastic scattering data, the
statistical model should leave the overall data normalization
free and include the possibility for additional, unmeasured
scatter in the data points [see Eqs. (11) and (13)]. These
ingredients ensure that minor deviations from the optical
model do not influence the potential parameters too strongly
and reduce the required precision for elastic studies making
them more feasible with modest experimental setups and for
radioactive ion beams in inverse kinematics. Our results in-
dicate that these additional precautionary parameters do not
negatively influence inference. In Sec. IV C, we saw that the
precise 86Sr(α, n) 89Zr cross-section measurements were able
to strongly pull the α-OMP parameters away from limits
set when considering only the elastic data; it is not clear if
adding additional uncertainties, whether they be in overall
normalization or statistical scatter, is a good practice for these
data. Considering the simplicity of the assumption that σreac ≈
σ(α,n), it is worth exploring such a procedure in future work.

Our second recommendation concerns the direct mea-
surements of (α, n) cross sections. While low-energy mea-
surements of the cross section can obviously give accurate
predictions of the thermonuclear reaction rate, they can be
challenging and time consuming to carry out for all of the
reactions playing an important role in the weak r process.
Additionally, if these studies provide only a handful of data
points of modest precision at higher energies, our investiga-
tions indicate little if any constraint will be placed on the
α-OMP at low energies. The implication has been made that
the theoretical cross section from a Hauser-Feshbach calcu-
lation can merely be scaled based on these data points or
that one of the several α-OMP from TALYS, which matches
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the measurement can be adopted. These procedures are not
compatible with our findings, since even seemingly discrepant
data will push parameters towards values that will explain the
cross section at those particular energies, which can cause
the uncertainties at low energies to actually increase. Further-
more, if no attempt is made to update the α-OMP parameter
based on such data, then little improvement can be expected in
the astrophysical region, especially as uncertainties on exper-
imental cross-section approach 50%. It would be preferable
for direct measurements to be carried out with the intent of
constraining the α-OMP parameters, meaning: statistical pre-
cision of <10%, many data points (say >3), and carried out at
energies where σreac ≈ σ(α,n). Ref. [71] is a good example of
this approach.

We made no attempt to calculate the reaction rate for
86Sr(α, n) 89Zr using our results. Finding an efficient way to
do this so that reaction rate libraries that include uncertainties
could incorporate experimental results would be advantageous
[72]. Finally, construction of a global α-OMP with quantified
uncertainties similar to the work of Ref. [46] is desirable.
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