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Abstract. Type I X-ray bursts (XRBs) are the most frequently observed ther-
monuclear explosions in nature. The 22Mg(α,p)25Al reaction plays a critical role
in XRB models. However, experimental information is insufficient to deduce a
precise 22Mg(α,p)25Al reaction rate for the respective XRB temperature range.
A new measurement of 25Al+p resonant scattring was performed up to the as-
trophysically interested energy region of 22Mg(α,p)25Al. Several resonances
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were observed in the excitation functions, and their level properties have been
determined based on an R-matrix analysis. In particular, proton widths and
spin-parities of four natural-parity resonances above the α threshold of 26Si,
which can contribute the reaction rate of 22Mg(α,p)25Al, were first experimen-
tally determined.

1 Introduction

Type I X-ray bursts are the most frequently observed thermonuclear explosions in nature
[1–3]. These astrophysical phenomena occur in the envelope of accreting neutron star in
low-mass X-ray binary systems [4, 5]. The investigation of X-ray bursts is significant to the
understanding of the neutron star’s properties and the underlying physics [6]. The bursts are
driven by the tripe-α reaction, the αp-process [7] and the rp-process [8, 9]. After the breakout
from the hot CNO cycle, the nucleosynthesis path is characterized by the αp-process which
is the dominant process in sd-shell nuclei. The αp-process is a sequence of α- and proton-
induced reactions that rapidly transport nuclear material, along the neutron deficient side of
the stable nuclei, from the CNO cycle toward heavier masses region.

The X-ray light curve is the only direct observable of X-ray bursts, which is affected
significantly by the αp-process. According to a recent sensitivity study by Cyburt et al.
[10], the 22Mg(α, p)25Al reaction is thought to be the most sensitive one within the αp-
process according to the calculation of multi-zone burst model (KEPLER code) and has a
prominent impact on the burst light curve. However, the reaction rates were calculated using
the statistical models due to the missing of important experimental information.

2 Experimental method

A resonant scattering measurement of 25Al+p has been performed to experimentally examine
the 22Mg(α, p)25Al reaction rates. The experiment was carried out using the CNS radioactive
ion beam separator (CRIB) [11], installed by the Center for Nuclear Study (CNS), University
of Tokyo, in the RIKEN Accelerator Research Facility. A primary beam of 24Mg8+ was
accelerated up to 8.0 MeV/u by the AVF cyclotron (K = 70) with an average intensity of
1 eµA. The primary beam bombarded a liquid-nitrogen-cooled D2 gas target [12] where a
secondary beam of 25Al was produced via the 24Mg(d, n)25Al reaction in inverse kinematics.
The D2 gas at 200 Torr and 90 K was confined in a small cell with a length of 80 mm.
The entrance and exit windows were made of 2.5 µm thick Havar foils. The 25Al beam was
separated by the CRIB separator using the in-flight method. The 25Al beam, with an energy of
142 ± 1 MeV and an average intensity of 2.0×105 pps, was then delivered to F3 experimental
chamber and bombarded a 150-µm-thick (CH2)n target in which the beam was stopped. The
setup at F3 experimental chamber is shown in figure 1, which is quite similar to that used in
Ref. [13]

A PPAC (Parallel Plate Avalanche Counter) [14] and a MCP (Micron Channel Plate) [15]
were used for measuring time and position information of the beam particles. The beam par-
ticles were identified in an event-by-event mode using the abscissa of MCP, and the ToF be-
tween MCP and the RF signal provided by the cyclotron. After passing through a Wien-Filter,
the 25Al beam purity was typically 70%. Figure 2(a) shows the beam particle identification
before the secondary target.

The recoiling light particles were measured using three sets of Si telescopes at average
angles of θlab = 0◦, 20◦ and 23◦, respectively. Each telescope consisted of a 65-µm-thick

EPJ Web of Conferences 260, 05001 (2022)

NIC-XVI
https://doi.org/10.1051/epjconf/202226005001

2



Air

Vacuum NaI (10 crystals of

50 50 100 mm´ ´ ）

MCP

g

PPAC

Si telescopes
25

Al

C targetH2

p
electron
reflector

electron
emission
foil

Figure 1. Schematic diagram (side view) of the experimental setup at F3 chamber.
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Figure 2. (a) Identification plot for the beams via the ToF technique. (b) Identification plot for the
recoiling particles via the ∆E-E technique.

double-side-strip (16×16 strips) silicon detector and two 1500-µm-thick pad detectors. The
recoiling particles were clearly identified by using the ∆E-E method as shown in figure 2(b).
An array of ten NaI detectors was mounted directly above the target and used to detect the γ
rays from the decay of the excited states in 25Al. Each NaI detector is with a geometry of 50
× 50 × 100 mm, covering 20% of the total solid angle altogether. In addition, an 80-µm-thick
carbon target was used in a separate run for evaluating the background contribution.

The de-excitation γ rays in the inelastic events have been measured with the NaI detectors.
These detectors have an average energy resolution of 13.5% (FWHM) for 662-keV γ rays.
The 450-keV photopeak detection efficiency ε was measured as 5%, using γ-ray sources
placed at the target position. The γ-ray enery spectrum of proton-γ coincident events showed
a peak at 450 keV and the contribution to the excitation function by the inelastic scattering
events was successfully deduced. The inelastic contribution, less than 12% of the elastic
scattering, was subtracted from the total excitation function.

Ec.m. resolution of the excitation function was 30-90 keV in full width at half maximum
(FWHM) for the Si telescope at θlab = 0◦. The uncertainty was mostly from energy straggling
of the particles in the thick target, along with the energy resolution of the silicon detectors. At
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larger angles, the angular resolution of the recoiling proton produced large energy uncertainty
and the resulting energy resolution was 75-200 keV at θlab ∼ 20◦.

3 Exprimental results and R-matrix analysis

The excitation function of 25Al+p elastic scatering has been reconstructed using the procedure
decribed previously [13, 16–18]. The excitation function of elastic scattering for the proton
target was deduced by subtracting the carbon and inelastic scattering contributions. The ex-
citation function around θlab = 0◦ is shown in figure 3; data from the other two telescopes
were not included in the analysis due to their awful energy resolution. Several resonant struc-
tures were clearly observed in the spectrum. In order to determine the resonant parameters
of observed resonances, R-matrix calculations have been performed with the R-matrix code
AZURE2 [19]. A channel radius of R = 1.4 × (1 + 251/3) ≈ 5.5 fm appropriate for the 25Al+p
system has been utilized in the calculation.

For the discussions on the level properties obtained by R-matrix analysis and the astro-
physical implications on the X-ray bursts, please refer to our published paper [20].

elastic scattering data
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Figure 3. Excitation function of 25Al+p elastic scattering at θlab = 0-8◦. The red curve represents the
best overall R-matrix fit.
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