Exploring the Origin of Light Heavy Elements
using experiments, theory, and observations
Thanassis Psaltis
Triangle Universities Nuclear Laboratory
psaltis.tha@duke.edu
January 11, 2024
ATOMKI
Image Credit: NASA/CXC/SAO
What is the origin of the elements?
C. Kobayashi, A. Karakas and M. Lugaro,
Astrophys. J 900, 179 (2020)
HD 122563 (DSS2/ Aladin Sky Atlas)
What do the ancient stars show us?
See also: C. Sneden, J. J. Cowan and R. Gallino,
Annu. Rev. Astron. Astrophys. 46, 241 (2008)
How many processes contribute to the production
of elements between
strontium and silver?
What is the origin of the elements?
C. Kobayashi, A. Karakas and M. Lugaro,
Astrophys. J 900, 179 (2020)
The weak $r$-process
-
Where?
In neutrino-driven outflows of
explosive environments (ccSNe
or NSMs)
-
When?
During the expansion of the hot
and dense outflows ($Y_e \equiv
n_p/(n_p+n_n),s,\tau$)
-
How?
After an $\alpha$-rich
freeze-out from NSE at T= 5-2 GK $(\alpha,n)$
reactions produce heavy elements
-
What?
Can synthesize heavy elements around
Z = 47 (silver) found in
metal-poor stars
S. Woosley & R.D. Hoffman, Astrophys. J 395, 202 (1992) •
S. Wanajo et al., Astrophys. J. 554, 578 (2001) •
A. Arcones & F. Montes, Astrophys. J 731, 5 (2011)
How important are the $\mathbf{(\alpha,xn)}$ reactions in
the weak $r$-process?
How
much do we know the $(\alpha,xn)$ reaction rates?
The $(\alpha,xn)$ reaction rates are
sensitive to the $\alpha$-nucleus
potential
and their uncertainties can be up
to two orders of magnitude.
J. Pereira and F. Montes, Phys. Rev. C 93, 034611 (2016) •
P. Mohr, Phys. Rev. C 94, 35801 (2016)
Framework of the
sensitivity study
A. Parikh et al., Astrophys. J., Suppl. Ser. 178, 110 (2008)
N. Nishimura et al.,
Mon. Not. R. Astron. Soc 489, 1379
(2019)
J. Bliss et al., Phys. Rev. C 101, 055807 (2020)
P.A. Denissenkov et al., Mon. Not. R. Astron. Soc 503, 3913 (2021)
-
Relevant
thermodynamic profiles spanning the astrophysical
phase-space ($Y_e$, $s$, $\tau$)
J. Bliss et al.,
Astrophys. J 855, 135 (2018)
-
$(\alpha, xn)$ reaction rates
based on the Atomki-v2
$\alpha$-nucleus potential
P. Mohr et al., At. Data Nucl. Data Tables 132, 101453 (2021)
-
MC sampling of the
$(\alpha,xn)$ reaction rates
(104 calculations)
-
Find the most impactful $(\alpha,xn)$
reactions and compare with observations
For more details: A. Psaltis et al., Astrophys. J 935, 27 (2022)
The impact of
updated $(\alpha,n)$ reaction rates to elemental abundances
Same model, but different $(\alpha, xn)$ reaction rates!
A. Psaltis et al., Astrophys. J 935, 27 (2022)
The impact of
new $(\alpha,n)$ reaction rates to elemental abundance ratios
A. Psaltis et al., Astrophys. J 935, 27 (2022)
Combine
observations, astrophysical modeling and nuclear physics uncertainties
Which are the most important $\mathbf{(\alpha,xn)}$ reactions for
the weak $r$-process?
Finding the most
important $(\alpha,n)$ reactions for the weak $r$-process
Search for the (anti)correlations! 🔍
The most
important $(\alpha,n)$ reactions for the weak $r$-process
N=50 shell closure is a bottleneck for T=
4-5 GK due to the $(n,\gamma) \leftrightarrow (\gamma,n)$ equilibrium
Can we study the most important
$\mathbf{(\alpha,xn)}$ reactions in the lab?
Most
of the relevant beams are accessible!
Expected FRIB
ultimate beam rates
What has been measured so far?
-
$\mathrm{^{86}Kr(\alpha,n)}$,
$\mathrm{^{96}Zr(\alpha,n)}$
and $\mathrm{^{100}Mo(\alpha,n)}$ at ATOMKI
G.G. Kiss et al.,
Astrophys. J 908, 202 (2021)
• T.N. Szegedi et al.,
Phys. Rev. C 104, 035804 (2021)
-
$\mathrm{^{75}Ga(\alpha,n)}$,
$\mathrm{^{85,86}Kr(\alpha,xn)}$,
$\mathrm{^{85}Br(\alpha,xn)}$ at NSCL/FRIB (HabaNERO/SECAR)
F. Montes, J. Pereira et al.
-
$\mathrm{^{86}Kr(\alpha,xn)}$,
$\mathrm{^{87}Rb(\alpha,xn)}$,
$\mathrm{^{88}Sr(\alpha,xn)}$,
$\mathrm{^{100}Mo(\alpha,xn)}$ at Argonne (MUSIC)
M. L. Avila, C. Fougères et al.
W. J. Ong et al., Phys. Rev. C 105, 055803 (2022)
-
$\mathrm{^{86}Kr(\alpha,n)}$ and $\mathrm{^{94}Sr(\alpha,n)}$ at TRIUMF (EMMA)
C. Aa. Diget, A. M. Laird, M. Williams et al.
C. Angus et al., EPJ Web of
Conferences, NPA-X (2023)
First
measurement of the
$\boldsymbol{\mathrm{^{93}Sr}(\alpha,xn)}$
reaction at Argonne with MUSIC
Proposal #1923, PI: A. Psaltis,
co-PI: W.J. Ong
$\mathrm{^{93}Sr}(\alpha,xn)$ at Argonne with MUSIC
M. L. Avila et al., NIM A 859, 63 (2017)
- Re-accelerated $\mathrm{^{93}Sr}$ beam from $\nu$CARIBU.
- MUSIC has close to 100% efficiency due to its
segmented anode structure.
- Use a single beam energy to
measure a large range of excitation
functions of angle integrated
cross sections.
What is on
the horizon?
New experimental measurements of the key
$(\alpha, xn)$ reactions and multi-messenger observations will
help us constrain the contribution of
neutrino-driven outflows to the production elements between strontium and silver.
Summary
- The
weak $r$-process in
neutrino-driven outflows can
contribute to the production of
elements between strontium and
silver that are observed in
Galactic metal-poor stars.
-
We explored the impact of $(\alpha,xn)$
reactions to the weak
$r$-process and
identified the most important
of them to motivate future
experiments in stable and
radioactive ion beam facilities.
-
Experiments in the current and
next-generation stable and RIB facilities, multimessenger observations
and theoretical modeling will
enhance our understanding of
the origin of the light heavy elements.
Köszönöm!
Slides available at
http://psaltisa.github.io/talks