Y. Hu
et al. Nucl. Phys. A
918, 61 (2013) •
G. Hardie
et al., Phys. Rev. C
29, 1199 (1984)
M. Wiescher
et al., Phys. Rev. C
28, 1431 (1983) • H. Yamaguchi
et al., Phys. Rev. C
87, 034303 (2013)
How to measure the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$
reaction in a lab
Inverse kinematics in the laboratory frame.
C.R. Brune and B. Davids, Annu. Rev. Nucl. Part. 65, 87 (2015) •
C. Rolfs and C.A. Barnes, Annu. Rev. Nucl. Part. 40, 45 (1990)
The DRAGON recoil separator 🐲
D.A. Hutcheon et al., Nucl. Instr. Meth. Res. A
498, 190 (2003)
Reactions in inverse kinematics: the challenge
DRAGON's acceptance $ -~\mathrm{\theta_{DRAGON} \sim 21~mrad}$
$\mathrm{^7Be(\alpha,\gamma)^{11}C - \theta_{r,max} \sim 43~mrad}$
C. Ruiz, U. Greife and U. Hager, Eur. Phys. J. A
50, 99 (2014)
Can DRAGON can measure $\omega \gamma$ of reactions
with $\mathrm{\theta_{r,max}>\theta_{DRAGON}}$ ?
Proof-of-principle test: $\mathrm{^6Li(\alpha,\gamma)^{10}B}$
A. Psaltis et al., Nucl. Instrum. Methods Phys. Res. A 987, 164828 (2021)
DRAGON can measure $\omega \gamma$ of reactions
with $\mathrm{\theta_{r,max}>\theta_{DRAGON}}$
$\mathrm{\omega \gamma_{lit}= (0.228 \pm 0.038)~eV}$
$\mathrm{\omega \gamma_{DRA}= 0.225^{+0.025}_{-0.035} (stat.) \pm 0.030 (syst.)~eV}$
A. Psaltis et al., Nucl. Instrum. Methods Phys. Res. A 987, 164828 (2021)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$
The DRAGON recoil separator 🐲
D.A. Hutcheon et al., Nucl. Instr. Meth. Res. A
498, 190 (2003)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ PID plot
A. Psaltis et al., Phys. Rev. C 106, 045805 (2022)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ BGO plot
A. Psaltis et al., Phys. Rev. Lett. 129, 162701 (2022)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ resonance strength results
A. Psaltis et al., Phys. Rev. Lett. 129, 162701 (2022) •
A. Psaltis et al. Phys. Rev. C 106, 045805 (2022)
Calculate the new $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction rate
Treat $(\omega \gamma, E_{r_i},\cdots)$ as distributions and use Monte Carlo techniques to extract a
statistically meaningful reaction rate.
R. Longland et al., Nuc. Phys. A 841, 1 (2010) • A.L. Sallaska et al., Astrophys. J Suppl. Ser. 207, 18 (2013)
The code is available at $\texttt{https://github.com/rlongland/RatesMC}$
The new $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction rate
We decreased the rate uncertainty to $\approx 10\%$ over $T= 1.5-3$ GK
The new $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction rate
No effect in $\nu p$-process nucleosynthesis
Take-home message #1
We measured the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction using DRAGON and constrained its rate
over $\nu p$-process energies.
weak $\boldsymbol{r}$-process ($\boldsymbol{\alpha}$-process)
S. Woosley & R.D. Hoffman, Astrophys. J 395, 202 (1992) •
S. Wanajo et al., Astrophys. J. 554, 578 (2001) •
A. Arcones & F. Montes, Astrophys. J 731, 5 (2011) •
J. Bliss et al., Phys. Rev. C 101, 055807 (2020)
What is the impact of the
$\mathbf{(\alpha,xn)}$ reactions
in
the weak $r$-process?
How well do we know the $(\alpha,xn)$ reaction rates?
The $(\alpha,xn)$ reaction rates are sensitive to the $\alpha$-optical model potential and can
differ by up to two orders of magnitude.
J. Pereira and F. Montes, Phys. Rev. C 93, 034611 (2016) •
P. Mohr, Phys. Rev. C 94, 35801 (2016)
The impact of new $(\alpha,n)$ reaction rates to
elemental abundances
Same model, but different $(\alpha, xn)$ reaction rates!
A. Psaltis et al., Astrophys. J 935, 27 (2022)
The impact of new $(\alpha,n)$ reaction rates
to elemental abundance ratios
A. Psaltis et al., Astrophys. J 935, 27 (2022)
Combine observations, astrophysical modeling and nuclear physics uncertainties
A. Psaltis et al., Astrophys. J 935, 27 (2022)
Which are the most important
$\mathbf{(\alpha,xn)}$ reactions
for
the weak $r$-process?
Finding the most important $(\alpha,n)$ reactions
for the weak $r$-process
The most important $(\alpha,n)$ reactions
for the weak $r$-process
- $\mathrm{^{84}Se}$, $\mathrm{^{87-89}Kr, ^{93}Sr}$
Affect many elemental ratios in many astrophysical conditions
- $\mathrm{^{86}Br,^{86, 90}Kr, ^{87-89}Rb, ^{91, 92, 94}Sr, ^{94}Y}$
Affect few elemental ratios in many astrophysical conditions
- $\mathrm{^{85}Se, ^{85}Br}$
Affect many elemental ratios in few astrophysical conditions
- $\mathrm{^{63}Co, ^{67}Cu, ^{79, 81}Ga, ^{76}Zn, ^{80, 82}Ge,
^{83}As}$
$\mathrm{^{87, 90, 91}Rb, ^{88-90}Sr, ^{95, 96}Y, ^{96-98}Zr}$
Affect few elemental ratios in few astrophysical conditions
Take-home message #2
We combined observations, astrophysical modeling and nuclear theory
to study the impact of $(\alpha,xn)$ reactions to the weak $r$-process
Can we study these $\mathbf{(\alpha,xn)}$ reactions in the lab?
Most of the relevant beams are accessible now!
FRIB expected beam rates for PAC2 experiments
First measurement of the $\boldsymbol{\mathrm{^{93}Sr}(\alpha,xn)\mathrm{^{96-x}Zr}}$ reaction
$\mathrm{^{93}Sr}(\alpha,xn)\mathrm{^{96}Zr}$ at Argonne with MUSIC
M. L. Avila et al., Nucl. Instrum. Methods Phys. Res A 859, 63 (2017)
- Re-accelerated $\mathrm{^{93}Sr}$ beam from $\nu$CARIBU.
- Close to 100% efficiency due to its
segmented anode structure. Self-normalizing, no
additional monitor detectors are needed.
- Measure a large range of excitation
functions of angle and energy integrated
cross sections using a single beam energy.
Proposal #1923, PI: Psaltis, co-PI: Ong
Active Targets will play a major role in measuring
all the important $(\alpha,xn)$ cross sections for the weak $r$-process!
🤠 yeehaw
Measurement of $\boldsymbol{(\alpha,xn)}$ reactions at FRIB using SECAR
$\mathrm{^{84}Se}(\alpha,n)\mathrm{^{87}Kr}$ and $\mathrm{^{87}Kr}(\alpha,n)\mathrm{^{90}Sr}$
at FRIB with SECAR
G. Berg et al., Nucl. Instrum. Methods Phys. Res A 877, 87 (2018)
- Large acceptance allows for measurement of $(\alpha,n)$ reactions
- JENSA jet target & LENDA neutron array
- Focal plane setup: 2 MCP position sensitive TOF detectors, Ionization Chamber, Si-detector
Secrets in the stardust 💫
Isotopic abundance patterns detected in presolar grains (SiC-X) could reveal core-collapse supernova nucleosynthesis signatures!
Pellin, M. J. et al., LPSC 37, 2041 (2006)
P. R. Heck et al., PNAS 117, 1884 (2020)
What we expect in the near future
More measurements on the key $(\alpha, xn)$ reactions and observations of old stars will
help us constrain the production site of the light heavy elements, between Sr and Ag.
Take-home messages
- We measured the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction using DRAGON and constrained its rate
over $\nu p$-process energies.
- We combined observations, astrophysical modeling and nuclear theory
to study the impact of $(\alpha,xn)$ reactions to the weak $r$-process.
- Experiments in the current and next-generation facilities, along with multimessenger observations
and theoretical modeling will help us better understand the origin of the heavy elements.
Thank you!
🤠
Slides available at
http://psaltisa.github.io/talks