Y. Hu
et al. Nucl. Phys. A
918, 61 (2013) •
G. Hardie
et al., Phys. Rev. C
29, 1199 (1984)
M. Wiescher
et al., Phys. Rev. C
28, 1431 (1983) • H. Yamaguchi
et al., Phys. Rev. C
87, 034303 (2013)
Constrain the reaction rate for
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ at $\nu p$-process
temperatures
How to measure the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$
reaction in a lab
C.R. Brune and B. Davids, Annu. Rev. Nucl. Part. 65, 87 (2015) •
C. Rolfs and C.A. Barnes, Annu. Rev. Nucl. Part. 40, 45 (1990)
The DRAGON recoil separator 🐲
D.A. Hutcheon et al., Nucl. Instr. Meth. Res. A
498, 190 (2003)
Reactions in inverse kinematics
DRAGON's acceptance $ -~\mathrm{\theta_{DRAGON} \sim 21~mrad}$
$\mathrm{^7Be(\alpha,\gamma)^{11}C - \theta_{r,max} \sim 43~mrad}$
C. Ruiz, U. Greife and U. Hager, Eur. Phys. J. A
50, 99 (2014)
Can DRAGON can measure $\omega \gamma$ of reactions
with $\mathrm{\theta_{r,max}>\theta_{DRAGON}}$ ?
Proof-of-principle test: $\mathrm{^6Li(\alpha,\gamma)^{10}B}$
A. Psaltis et al., Nucl. Instrum. Methods Phys. Res. A 987, 164828 (2021)
DRAGON can measure $\omega \gamma$ of reactions
with $\mathrm{\theta_{r,max}>\theta_{DRAGON}}$
$\mathrm{\omega \gamma_{lit}= (0.228 \pm 0.038)~eV}$
$\mathrm{\omega \gamma_{DRA}= 0.225^{+0.025}_{-0.035} (stat.) \pm 0.030 (syst.)~eV}$
A. Psaltis et al., Nucl. Instrum. Methods Phys. Res. A 987, 164828 (2021)
Measure the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction
The DRAGON recoil separator 🐲
D.A. Hutcheon et al., Nucl. Instr. Meth. Res. A
498, 190 (2003)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ PID plot
A. Psaltis et al., Phys. Rev. C 106, 045805 (2022)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ BGO plot
A. Psaltis et al., Phys. Rev. Lett. 129, 162701 (2022)
$\mathrm{^7Be(\alpha,\gamma)^{11}C}$ resonance strength results
A. Psaltis et al., Phys. Rev. Lett. 129, 162701 (2022) •
A. Psaltis et al. Phys. Rev. C 106, 045805 (2022)
The new $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction rate
We decreased the rate uncertainty to $\approx 10\%$ over $T= 1.5-3$ GK
Take-home message #1
We measured the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction using DRAGON and constrained its rate
over $\nu p$-process energies.
How I see nuclear astrophysics
HD 122563 (DSS2/ Aladin Sky Atlas)
What do the old stars reveal to us?
See also: C. Sneden, J. J. Cowan and R. Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008)
How many processes contribute to the production of elements between Sr and Ag?
What is the impact of the
$\mathbf{(\alpha,xn)}$ reactions
in
the weak $r$-process?
How I see nuclear astrophysics
How well do we know the $(\alpha,xn)$ reaction rates?
The $(\alpha,xn)$ reaction rates are sensitive to the $\alpha$-optical model potential and can
differ by up to two orders of magnitude.
J. Pereira and F. Montes, Phys. Rev. C 93, 034611 (2016) •
P. Mohr, Phys. Rev. C 94, 35801 (2016)
How I see nuclear astrophysics
The impact of new $(\alpha,n)$ reaction rates to
elemental abundances
Same model, but different $(\alpha, xn)$ reaction rates!
A. Psaltis et al., Astrophys. J 935, 27 (2022)
The impact of new $(\alpha,n)$ reaction rates
to elemental abundance ratios
A. Psaltis et al., Astrophys. J 935, 27 (2022)
Combine observations, astrophysical modeling and nuclear physics uncertainties
A. Psaltis et al., Astrophys. J 935, 27 (2022)
Which are the most important
$\mathbf{(\alpha,xn)}$ reactions
for
the weak $r$-process?
Finding the most important $(\alpha,n)$ reactions
for the weak $r$-process
The most important $(\alpha,n)$ reactions
for the weak $r$-process
- $\mathrm{^{84}Se}$, $\mathrm{^{87-89}Kr, ^{93}Sr}$
Affect many elemental ratios in many astrophysical conditions
- $\mathrm{^{86}Br,^{86, 90}Kr, ^{87-89}Rb, ^{91, 92, 94}Sr, ^{94}Y}$
Affect few elemental ratios in many astrophysical conditions
- $\mathrm{^{85}Se, ^{85}Br}$
Affect many elemental ratios in few astrophysical conditions
- $\mathrm{^{63}Co, ^{67}Cu, ^{79, 81}Ga, ^{76}Zn, ^{80, 82}Ge,
^{83}As}$
$\mathrm{^{87, 90, 91}Rb, ^{88-90}Sr, ^{95, 96}Y, ^{96-98}Zr}$
Affect few elemental ratios in few astrophysical conditions
Take-home message #2
We combined observations, astrophysical modeling and nuclear theory
to study the impact of $(\alpha,xn)$ reactions to the weak $r$-process
Can we study these $\mathbf{(\alpha,xn)}$ reactions in the lab?
First measurement of the $\boldsymbol{\mathrm{^{93}Sr}(\alpha,xn)\mathrm{^{96-x}Zr}}$ reaction
$\mathrm{^{93}Sr}(\alpha,xn)\mathrm{^{96}Zr}$ at Argonne with MUSIC
M. L. Avila et al., Nucl. Instrum. Methods Phys. Res A 859, 63 (2017)
- Re-accelerated $\mathrm{^{93}Sr}$ beam from $\nu$CARIBU.
- Close to 100% efficiency due to its
segmented anode structure. Self-normalizing, no
additional monitor detectors are needed.
- Measure a large range of excitation
functions of angle and energy integrated
cross sections using single beam energy
Proposal #1923, PI: Psaltis, co-PI: Ong
Measurement of $\boldsymbol{(\alpha,xn)}$ reactions at FRIB using SECAR
Most of the relevant beams are accessible now!
FRIB PAC2 expected beam rates
The SECAR recoil separator
G. Berg et al., Nucl. Instrum. Methods Phys. Res A 877, 87 (2018)
What we expect in the near future
More observations of old stars and measurements on the key $(\alpha, xn)$ reactions will
help us constrain the production site of the elements between Sr and Ag.
Take-home messages
- We measured the $\mathrm{^7Be(\alpha,\gamma)^{11}C}$ reaction using DRAGON and constrained its rate
over $\nu p$-process energies.
- We combined observations, astrophysical modeling and nuclear theory
to study the impact of $(\alpha,xn)$ reactions to the weak $r$-process.
- Experiments in the current and next-generation facilities, along with multimessenger observations
and theoretical modeling will help us better understand the origin of the elements.